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The result of PereirdPhys. Rev. E63, 061809(2001)] does not contradict previous work, but rather
complements it. Both this work and previous work show there is no reason to suspect that a circular interface
in a hexagonal Wigner-Seitz cell is stable to small perturbations, whether they are hexagonal or elliptical. The
elliptical perturbation is on the downward energy pathway from a perfectly circular interface to a hexagonally
modulated interface. Finally, my thin film conclusions are shown to be valid using an independent method.
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In Ref.[1], a stability analysis for the cylindrical phase of planation for this—the elliptical geometry is stable compared
an AB diblock copolymer melt was made, using the to the perfectly circular geometry but is not stable to the
Likhtman-SemenoyLS) method[2], in the strong segrega- Pperturbed circular geometry, i.e.=rq[ 1+ 5 cos()].
tion limit (SSL). We found that the perfectly circular inter-  Given the above, the rudimentary LS metH@q used in
face was unstable to small elliptical perturbations. Matsen, ifRef. [1] underestimates the free energy because it neglects
the preceding Commeri8], claims this result is incorrect the constraint of equality oA andB ends at theAB inter-
and attempts to use two methods to back his claim. The fird@ice. Imposing this constraint will make the minimum of the

method is an Olmsted-Milngi5] calculation, which is not elliptical energy move closer to=1 and the actual value of
correctly implemented(l shall detail later why the imple- this minimum will increase. Note that the actual difference

mentation is incorrect. The second method is a self- between the circular and elliptical free energies is only 0.3%,

consistent field theorySCFT) calculation, on which | shall so that the stability issue between elliptical and circular ge-

focus my discussion. To understand the discrepancy betwee etries is very delicate, most probably not easily resolvable

Matsen’s SCFT calculation and the result in Rif], it is within the accuracy of most theories. In any case, this issue

; i tant t te that Matsen’ vsi d th seems to be of academic interest because it is clear from
extremely important fo note that viatsen's analysis an fatsen’s work that the optimal shape is the sixfold perturbed
analysis in Ref[1] do not strictly address the same issue.

) '~ geometry. However, using the sixfold perturbed geometry
The SSL theory used in ReffL] compares the free energies it the LS method is difficultior in fact with any other

of only two different geometriegj) a perfectly circulaiAB  anajytic methogland therefore the simpler circular geometry
interface with a corresponding isotropic, hexagonal Wignerfgr the thin film analysis was used in Réd].
Seitz (WS) cell and (i) an elliptical AB interface with a Matsen proceeds to comment that my conclusions for thin
corresponding anisotropic, hexagonal WS cell. The SCFT, ofiims are unreliable. | reject this statement. To support my
the other hand, has greater latitude and can sample a widelew, | obtained an upper bound for the elliptical distortion
variety of possible geometries. As a result, the SCFT findsree energy using the Olmsted-Milner wedge approach with
that the optimal geometry th&B interface has is of the form the straight path approximatiq®PA) [5]. The SPA assumes
r=ro[1+dcos(®)], i.e., an interface which is predomi- a hexagonal outer WS cell boundary and also a hexagonal
nantly circular but has a sixfoldhexagonal perturbation.  AB interface. TheAB interface, however, is a factor ¢/
For Matsen's analysis, ayN=40, the perturbations is  (f is the A block fraction smaller than the WS boundary. It
~0.03% but grows by an order of magnitude in the limit of is important to note that this method makes a stability analy-
xN—o [4]. So it is clear from Matsen’s own work that the sis on a symmetrical hexagonaB interface(not a circular
circular interface is not the optimal shape for th@ inter-  AB interface and overestimates the free energy by at least
face. The analysis in Refl] is a stability analysis on the 3.5% [5]. | assume an affine deformation, as in RJf],
perfectly circular interface. Given that the hexagonallywhere theAB interface and the WS cell boundary have the
modulated interface already has a lower energy than a circisame aspect ratio. Doing this | find the free energy is given
lar interface, it is not difficult to see why an elliptically per- by
turbed interface may also have a lower energy, especially
since, in a small way, it begins to resemble the hexagonal _  2Fpey| tx 21, N
modulation. Of course | have not said anything about the "™~ 33 t (1+A%3) +ﬁ
stability of the elliptical geometry to, for example, the geom-
etry obtained from the SCFT, i.e., a perturbed circle of the { 24 A 31 <A3 (A2—3)3>
>< —_——
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form r=rg[1+ dcos(&)]. It is most probably the case that +—+—

this geometry has a lower free energy than the elliptical ge- (1+3/A%)?2

ometry. Furthermore, Matsen has implied that the analysis in 2

e : A A
Ref.[1] is incorrect because there has been no experimental ~  ~— | 14— || (1)
observations of such distortions. There is a very simple ex- V3 9
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FIG. 2. Free energy difference plotted as a function of scaled
film thickness d=D/(Dg,/2) for Avy=(ysg— ysa)!yag=0.15.
Dashed curves arg,, while solid curves are fof;. The numbers
correspond to number of layers. This is exactly the same calculation
as Fig. 3 from Ref{1], with the only exception being the Olmsted-
WhereAEZ\/§tX/ty, Fhex and 23 are the free energy and Milner SPA used for the polymer energy rather than the Likthman-
side length of the isotropic hexagon, respectively, §ns  Semenov energy.

the perpendicular separation between the parallel sides of . ) )
length 2,.. (Note, if one were using an elliptic@B inter- & constant and quadratic term ih), | have also imple-

face, the eccentricitye would be related toA by e?=1  mented the unit cell approximaticiiCA) (see Eq.(27) of
—A~2 whenA>1 ande?=1— A2 whenA<1.) To obtain Ref.[5]) and the kinked-path appromma?u()hl?A) (see Egs.
the optimal dimensions of an isotropic hexagon one write$30)—(36) of Ref.[5])). The UCA approximation assumes a
A=1 and then minimize§ with respect to {,/t*). One circular WS qell anq also a circulaB interface. Th_e KPA
finds the optimal { /t*)=1. To obtain the optimal dimen- assumes an isotropic hexagonal WS cell and a circhBRr
sions of the hexa or); when the hexagon is strairteét] interface. In both cases, extremely complicated expressions
-1 gdt It <1 agor E (f & for the free energy are foun@h terms of the eccentricity of
] ) or con:pres_se K/t ), we m|n|_m|ze (for a par- the elliptic AB interfacg. In the KPA, one has to resort to
ticular (tx/ty)) with respect toA. See Fig. 1 for the results  ¢ompytationally expensive numerical integration to deter-
of these minimizations. From this figure it is clear that thepine the energy. Together with the SPA free energy, shown
anisptro.pic he_xagon is preferred tp isotropiq hexagons whepy this paper, i.e., Eq(1), our expressions are extremely
the film is strained. Hence, the main conclusion from REf.  compiicated functions of (or eccentricity, in stark contrast
remains valid. That is, because the elliptical distortion costs,q patsen’s equatiofl). Matsen justifies his simple expres-
comparatively, little free energy the parallel orientation of 5oy for the free energy with a claim that since the potential
the columns can be stabilizécelative to the perpendicular e chains experience is parabolic, the free energy must cor-
orientatior) by sm_all surfa_ce fields in favor of the minority respondingly be simple. However, one still has to integrate
monomer type. Figure 2 is calculated for exactly the sameyis notential overA and B domains which are not of the
parameters as Fig. 3 of Rfl] except using the Olmsted- same shape. This is the source of linear and higher-order
Milner SPA for the polymer energy rather than the LS en-ermgs inA . Thus Matsen’s equatiofl) must be treated with
ergy. We see the parallel state is stable well beydrdB,  gcepticism. For an independent check, the interested reader is
just as predicted in Refl]. Note that the Olmsted-Milner sferred to the recent paper by Chen and Fredricksin
SPA s an upper bound on the polymer energy and so the fr&ghich enforces the wedge constraint for cylindersaisC
energy curves have mu_ch greater curvature than_the COM@iblock copolymers. The SST calculations in this paper
sponding LS curves. This accounts for the small differencegerify all the points made above. In particular, the elastic
between the two figures. In summary, my previous prediCunergy involves up to five complicated integrals as functions
tions have been shown to be reliable, contradicting Matsengs ihe ‘strain. Also the free energy as a function of film thick-
claims. _ , . ness(plotted in Figs. 7 and 8 in the paper of Chen and
Finally, I detail why Eq.(1) of Matsen's comment is in- e qrickson has the same form as Figs. 2 and 3 of R&f,
correct. Matsen claims he s using the Olmsted-Milner;, the exactly circular configuration is not the free energy
strong-segregation theo($ST) to obtain his equatiofl). In minima.
an effort to understand why he has obtained such a simple
expression for the polymer stretching enefog., it only has Financial support from ARC QEIl is acknowledged.

FIG. 1. Free energy of anisotropic hexag@ull curve) and
isotropic hexagorfdashed curveas a function ot, /t} , using the

Olmsted-Milner wedge method, straight path approximation.
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